

- break apart seed) to start fermentation
 Chhu/Jihu Asian beer used mold from rice to create enzymes to break down starches in fresh rice
- Near East (Mesopotamia to Egypt) allowed the seed to begin to germinate (grow) which produced it's own starch digesting enzymes (malting)

Categories of Beer

Key difference within the two major types of beers (Lager or Ale) depends on the yeast used to ferment the mash and the temperatures

during fermentation

Ale – Use brewer's yeast which grow fast at higher temperatures. Typically considered top fermenters. Trap CO2 and "float" at the top of a fermentation

Lager – ferments slower with a yeast growing at low temps (bottom fermentation) A "fusion" of three strains of yeast likely gave

rise to the colder tolerant bottom fermenters -

Bavarian GMO!

Types of Ale

Top fermenters which ferment faster at higher temps giving more esters as flavors from yeast

- Brown ale red or copper colored, more mild in flavor
 Porter – darker (browned and caramelized grains)
- with full body.3. Stout Nearly black in color high amounts of hops and barley

reaction with the enzymes

			s Duri	ng Mas	optimum temperature
The Science of Cooking	a-Amylase (EC 3.2.1.1)	Endohydrolysis of 1,4-α-D-glucosidic linkages	amylose, amylopectin	dextrins, maltose, limit- dextrin, glucose (low amounts)	65-75°C
β-Amylase S		Successive exohydrolysis of the penultimate 1,4-α-D-	dextrins, amylose,	maltose	60-65°C
	Glucoamylase	Successive exohydrolysis of the terminal 1,4-α-D-	maltose, dextrins,	glucose	35-40°C
	(EC 3.2.1.20) Limit dextrinase	gucostate initiage at the non-reducing end of chains Hydrolysis of 1,6-tr-D-glucosidic linkages	amytose, amytopectin amylopectin	dextrins, maltose (smallest	55-60°C
(EC 3.2.1.142) Invertase F (EC 3.2.1.26)		Hydrolysis of sucrose	sucrose	glucose and fructose	58-62°C°, 33-35°C°
Enzymes are used in seed g	ermination	Reducing Ends (RE)- mutar	otatable anom	eric carbon – one	e per
Enzymes are used in seed g	ermination The enzymes beak starth down into mallose and the glucose. The glucose a used in respetition to provide energy for growth	Reducing Ends (RE)- mutar "chain end" - Beta amylase can only clei allows for digestion of starc (exo = 1.4 bond) HE COMPARENT	votatable anom	ix of a/b amylase zable sugars)	inase ond)
Enzymes are used in seed g	ermination The ecomes basis matics and the glucos. The glucos as used in regions to provide energy to provide	Reducing Ends (RE) – mutar "chain end" - Beta amylase can only clea allows for digestion of starc	ave from RE, m h to "metaboli	ix of a/b amylase zable sugars)	inase ond)
Enzymes are used in seed g	ermination The enzymes basis makes and then glucos. The glucos. In used in respective south to energy for power	Reducing Ends (RE) – mutar "chain end" - Beta amylase can only clet allows for digestion of starc (i-amylase (i-amylase (i-amylase (i-amylase (i-amylase (i-amylase) (i-amylase (i-amylase)	otatable anom	irrit doxto	inase ond)
Enzymes are used in seed g	ermination The encyres beak scheder in the form phose. The pho- phose the pho- phose the pho- pho- sector is pho- sector in the pho- sector pho-	Reducing Ends (RE) – mutar "chain end" - Beta amylase can only clea allows for digestion of starc amylase (amylase 	ave from RE, m h to "metaboli	init dextr (x - 1.6 b (x - 1.6 b) (x - 1.6 b) (x - 1.6 b) (x - 1.6 b) (x - 1.6 b)	inase ond)

Mashing

Cereal Adjuncts – a second source of starch – corn, rice or unmalted barley

- Add additional sugar for fermentation
- Mostly done with pale and mild brews like American lager (reduce costs of beer production)
- Used to create variety beers winter wheat...

•Result of mashing then extracting the liquid from the resulting solid is called "wort" which needs to be filtered and solid ppt removed

Called "sweet wort" until hops are added, then called "hopped wort"

 Used to balance the sweetness of sugars of malt by adding bitter flavors– alpha acids and phenolics

The Science of Cooking

Bottom fermentation

Lager Fermentation - Slower colder temps using larger sized yeasts Saccharomyces uvarum

- Yeast fall to bottom of liquid at end of fermentation
- Lower temps and longer times (several weeks)
 produce a mild flavor
- This is mostly used in US less harsh beers are produced this way

Conditioning

At the end of fermentation, diacetyl (buttery flavored fatty acid) is produced

Fermentations are often heated to reduce this compound (called Diacetyl rest)

- Important when using excess adjunct due to excess sugars
- Also when fermenting lagers they are lighter flavored and can't hide the diacetyl
 If the diacetyl

Sulfur gas is removed by bubbling gasses Added hops for aroma may be added

Further filtering and removal of solids

 Often times fining agent (isinglass gelatin from fish bladder) to settle solids in cask or during rest.

Store at cold temps then filtered to convert green beer to finished beer after carbon dioxide is added

Making the Wine

Three stages:

- Crushing grapes for the Juice
- · Fermentation by yeast (new wine)
- Aging or maturation of wine

Added Substances

Many chemical additives are used to improve wines.

- Enzymes added to fermenting wine to prevent unwanted disease causing yeasts from growing
- Polysaccharides promote retention of color, tannin and flavoring compounds from grape skins
 Culfus diavide used to inhibit other used and
- Sulfur dioxide used to inhibit other yeast and bacteria and preserves (antioxidant) flavor and color molecules
- Acid and simple sugars (glucose) balance to recover what grapes may lack.
 - Grapes grown in a cool climate will have low sugar
 Grapes grown in hot will have lost some of their acid
 - Grapes grown in not will have lost some of their aci

The Science of Cooking	Sulfur and Wine Both acts as an antimicrobial for sterilization (at high concentrations) and at lower concentrations will serve as an antioxidant – protecting color and aroma compounds from oxygen reactions while aging				
Molecular SO ₂	Bisulfite HSO ₃	Sulfite SO ₃ -2	Bound vs. Free Sulfur		
 Antioxidant and inhibitor of browning oxidizing enzymes Gas, soluble in water Only found in appreciable levels in pH<1 	 More prevalent at the low pH of wine Binds aldehydes, sugars and anthocyanins (bound SO₂) Prevents browning enzymes (quinones) and chemical oxidation (reacts with R-C=O groups) 	 Major form at pH greater than 7.5 Strong antioxidant Slowly reacts with oxygen and is one of the effects of aging. 	Bound – sulfite bonds or interacts with carbohydrates, polyphenoi and aldehydes Free – Unbound sulfur, in wine bisulfite in more pH neutral water a mix of sulfi and bisulfite. Only free forms of sulfites act as an antimicrobial		
1-100 people are sensitive to sulfite. Headaches and some asthma attacks.					

Types of Oaks				
Vanillin	Vanilla aroma			
Fresh oak	Trans- lactones			
Coconut	Cis- lactones			
Spice and clove	Eugenol and isoeugenol			
Caramel, butterscotch and sweet	Furfural and 5-methylfurfural			
Cinnamon and spice	Coumarin			
Charred and smoky aromas	Guaiacol and 4-methulguaiacol			

Fermentation

Many vineyards use the yeast from the skins on the grapes – others use *Saccharomyces cerevisiae* (brewer's yeast)

- Brewer's yeast can tolerate higher levels of alcohol and heat thus they keep making ethanol!
- Other alcohols are also made
- Some of the acids made by yeast create the aroma and flavor of wine

 Some sweet wines are stopped early or some of the juice (saved in reserve is added back)

- Wood barrels provide vanillin and other organic like molecules to the wine
- Current trend is to use oak barrels
- Wood can absorb some of the phenolics and tannins – (doesn't happen in bottle aging)
- Bottle aging alone limits some of the reactions with oxygen and other molecules
- Oxygen in barrels react with tannins and other compounds reducing astringency

Filtering/Fining

The last phase in wine making

 Racking and fining – removing the last bits of solids by settling then drawing off the liquid into a new container (dead yeast – "lees" and pulp)

Fines

Removes fine mist of solids found even after good racking

- Some solid particles will attract other particles and precipitate into fine solids
- · Fining is adding compounds to speed up the
- process and precipitate insoluble small particles • Historic fining agents include: Ox Blood, egg whites,
- milk casein, fish bladders, seaweed or clay. Modern methods include using a centrifuge or filter
- small enough to catch microorganisms, silicon clay...

Champagne and Sparkling Wines

Bubbles come from excess CO₂ which dissolves in the liquid.

- Extended fermentation under closed conditions create a supersaturated gas condition that when pressure is released, CO₂ escapes as a gas.
- · Bubbles form on small imperfections on glass
- best to pour champagne down the side of the glass to preserve a slow release of bubbles (fizz)
 - · Saves twice as much CO2 for later release
 - · Colder temps also maintains bubbles better

- - Increasing the amount of sugar in the grape by decreasing the water content then stop the fermentation early
 - Noble rot: is a mold which infects the grape vines and fruit causes perforations where water evaporates (concentrating the sugar)
- Fortified wine 18-20% alcohol added spirits to sweet wine for higher alcohol content
 - Often times brandy is added. Examples include vermouth, Sherry, Madeira and Port.

Enjoying the Wine - Taste

Flavor: Intensity and length of flavor reflect quality of the wine. Wines have a definite flavor that is strong and easily recognized, a mild flavor, or an obscure, faint flavor.

Dry or Sweet: Sweet wines have a taste similar to a solution of water and sugar. Degrees of sweetness range from very sweet to semi-sweet. Dry wines have an absence of sugar and range from semi-dry to very dry.

Enjoying the Wine - Taste

Tart: Tart wines have an agreeable degree of acidity caused by tartaric acid. The tart taste in wine can be compared to the tart taste of orange juice. Degrees of tartness vary from very tart, tart, slightly tart to lacking tartness.

Astringent: Astringent wines have a bitter taste, similar to cold coffee. A highly astringent wine will cause the mouth to pucker. The astringency is produced by the tannin in grape skins, and varies from very astringent to slightly astringent to lacking astringency. Reds are usually astringent; whites lack astringency.